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Abstract

This paper cstablishes necessary and suflicient conditions for an adaptive syster n with a
sinusoidal regressor (i.e., a regressor comprised exclusive].y of sinusoidal signals)toadmit an
exact linear time-invariant (1 ;J]) representation.  These conditions are important because
a large number of adaptive systen s used in practice have sinusoidal regressors, and the
stability, convergence and robustness propertics of syst emshaving 1,°1'1 representations can
be complet ely analyzed by well-kllowll methods.

1 INT'RODU”C’TION

A large number of adaptive systems used inpractice(e.g., for adaptive signal processing,
noise cancelling, acoustics, vibrationsuppression, de.), have regressors which contain sinu-
soidal excitations. I certain interesting cases, such systems have been found to admit exact
finite-dimensional lincar time-invariant (111) representations. Such cases are important be-
causc in contrast to nonlincar and/or time-varying representations, the stability, converge:ce
and robustness properties of 1 /11 systems can be completely characterized using standard
methods.

The use of LTTrepresentations for analysis of adaptive feedforward systems can be found
predominantly in papers fromthe acoustics and signal processing community. This includes
the pioncering work of Glover [12] andlater extensions found in Morgan and Sanford [20],
Morgan [21], Elliottet. al. [1 O], and Widrow and Stearns [34]. Inthe control community,
these LT1 representations have found their way into certain specialized aphlications such as
adaptive helicopter rotor conitrol (cf., Shaw and Albion [27], Hall and Wercley [13)), adaptive
vibration control (d., Bodson ¢f. al. [4], Messner and Bodsory [1 7]), and adaptive stru -
tural control and active isolation (¢f., Spanos and Raliman [30], Collins [7], Sievers and von
Ilotow [28]). lit cach of thesc papers, theauthors were able to analyze their application
more thorou ghly within an 1/1'] framework than would have beer, possible if they had used




Lyapunov analysis, Hyperstability, or other nonlincar/time-varying tools typically associated
with adaptive control analysis.

Interestingly, despite various successes in specific application arcas, no general unified the-
ory of 1.I'1 adaptive fcedforward systeins has emerged. In particular, nodefinitive conditions
for the 1T phenomena have been previously established.

In {his paper, a general unified theory of 1 J1'Trepresentations is developed for adapti ve
systemns having harmonic regressors. The main result is a precise condition (i.e., both neces-
sary and sufficient), for such harmonic adaptive systems to have an exact LT'Trepresentation,
and a clod-form analytic expressionfor this 1T representation whenthe conditionns satls-
fied. Thetheory completely unifies existing results by reproducing as special cases all known
instances of LI'l adaptive systems found in the literature. More importantly, the theory
generalizes existing results by indicating a much larger class of 1,11 adaptive systems than
previously known. Yxamples arc given to demonstrate the usefulness and implications of the
result. All results inthis paper arc based on the analysis in a recent Yeport [2].

2 13 ACKGROUND

2.1 Adaptive Systems with Harmonic Regressors

T'he configuration to be studied is shown in Figure 2.1. Anestimate § Of some signal yisto
be constructed as a lincar combination of the clements of a regressor vector (1) ¢ 1P, i.e,
Iistimated Signal

g = w(l) 1 x(1) (2.1)
where w (1) ¢ RN is a paramecter vector which is tunedin real-tlinlc using the adaptation
algorithm,

Adaptation Algorithm
w = pl'(p) [2(1)e(1)] (2.2

Here, the notation 1'(p)[-]is used to denote the immultivariable 1T transfer function 1'(s) -1
where 1'(s)is any 111 transfer function in the Laplace s operator (the differential operator
p will 1"(:’})]a‘(:c the Laplace operator S in al time-domain filtering expressions); the term
¢(1) € R is an crror signal; > () is an adaptation gain; and the signal & is obtained by
filtering the regressor = through any stable filter /'(p), i.e,

Regressor il ering
a=1(p) [z] (2.3

The notation I'(p)[-] denotes the multivariable IT1 transfer function ~'(s). 7 with SISO filter
I°(s), acting on the indicated vector time domain signal.



For the p urposes of this Paper, it will be assumed that the regressor @ can be written as
a lincar combination of m distinct sinusoidal components {w;} 1, O <wi1<wy < . ..< Wy,
where the frequencies have been ordered by size fromsimallest to largest, liquivalently, it is
assumed that there exists a matrix X' ¢ V%2 such {hat,
1101’ IN onic Regressor
T, /\'(:(f) (2.4

c(1) = [sin{wyt), cos(wil), ..., sin(wy, 1), cos(w, ) ¢ R (2.5)

Equations (2.1)-(2.5) takentogether will bereferredto as a harmonic adaplive system.
Collectively , these equations define an important open-loop mapping from the error signal ¢
tothe estimated output §. Because of its importance, this mapping will be denoted by the
special character H, i.e.,

9+ Hd] (2.)

The special structure of H is depicted in Figure 2.1,
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Iigure 2.1: LIV operator g = H[c] for adaptive system with harmonic regressor a, adaptation
law 17(s), andregressor filter 1'(s)

Most generally His a lincar time-varying (L1'V) operator. 1lowever, the main results of
this paper show thatl under certain simple conditions on the matrix A, the mapping H is
actually lincar time-invariant (I /J1). This result hias profoundimplications for many classes
of adaplive systemns, since they can be designed and analyzed completely using 111 theory.

REMARK 2.1 The definition of 1'(9) is left intentionally general to include analysis of the
gradient algorithm (i.e., with the choice I'(s) = 1 /s), the gradient algorithm with lcakage
(i.e., I'(s) = 1 /(s 0); o > 0), proportion al-plus-integral adaptation (i.e., 1'(s) =k, -1 k;/s),
or arbitrary lincar adaptation algorithms of the designer’s choosing. Adaptation laws which
arc nonlincar or normalized (c.g., divided by the norm of the regressor), are not considered
here since they do not have an equivalent LT representation 17 (S). .



REMARK 2.2 The usc of the regressor filter 17(s) is (2.3) allows the unified treatiment
of hany important adaptation algorithms including the well-kl)owJl IFiltered-X algorithm
from the signal processing  literature [32][21}[5](33}(1 6], and the Augmented Iirror algorithm
of Monopoli [19]. Since « is comprised purcly of sinusoidal componentsand I in (2.3) is
stable, all subsequent analysis will assume that the filter output @ has rcached a steady-st,atc
condition. n

22 Discussion

Most generally H in (2.6) is alincar time-varying (11'V) operator. However, under certain
conditions on the matrix &', the mapping H is actually lincar time-invariant.

The intuition behind this scemingly strange phenomena is explained by the modula-
tion/der nodulation properties of multiplicative sinusoidal terms. As a simple example, cor -
sider the LTI bandpass filter (BP 1) implementation shown in Figure 2.2,

G(s)= —;(L(s - j@ )+ L(s + jo,))

Iigure 2.2: Fxact L'T'1 Bandpass {ilter y = G(p)u using Lowpass filter L(s) and imnodulation
properties of sandwiched sinusoidal multiplications

Here, a lowpass filter 1(s) is sandwiched between matched sine/cosine multiplicati ons.
By inspection, the output can be written in terms of convolution integrals as,

t
Y :sinwbi‘l L1y sinwy(t - T)u(t - 7)d7 4 (toswbt/ (1) cos wy(t - THu(t - 7)dr  (2.7)
0



where £(1) is the impulse response of the 10W-pags filter L(s). At first glance this looks like
all 11V system . However, substituting the trigonometric identity,

sin wyl sin wy(t — T) Hcoswyl coswy(l - T) = COS wy7 (2.8)

into (2.7) andrearranging gives,

y = /(jt ((7) cos wy(7)u(t - 7)dr (2.9)

This integral can be recognized as a convolution of the input « with the time-invariant
impulse response £(1) coswy(t). Hence, the overall filter is 1:1°1 eventhough it hastime-
varying clements. The essential relation is identity (2.8) which indicates that the function of
both? and 1 on the left hand side, canbe written purely as the function of T scenonthe
right hand side.

It is also worth noting that the impulse response of the convolution integral (2.9) is formed
by modulating the lowpass filter response £(1) by cos(w,t), so that the resulting LT'1 filter has
the bandpass characteris tic,

L' (S) = L{((t) coswyl) - ;(1,(3 =) 4 L(s -1 jw)) (2.10)

Here we have used the well-k~lowll modulation property L{£(1)c?*'} = L(s - jw,) of the
Laplace transform [3].

As a specific example, let L(s) =1/(s -1 ) inFigure 2.2. Then the operator from v to y
shown in Figure 2.2 is exactly representable as an 111 filter, and has a (bandpass) transfer
function whit.]1 can be computed from (2.1 O) as,

s a

G(s)= - — (2.12)

-(5 - '(1');" -Vlwwg



3 LTI REPRESENTATION S

3.1 Single-Tone Regressor Case
Lemma 3.1 first characterizes the 1 11 operator for the case of asingletone regressor. The

arrangement is depicted in Figure 3.1 and corresponds to the special Case of A = di- Iax2in
(2.4).

Igure 3.1 Equivalent 11l representation of @ harmonic adaptive systemn with a single tone

LEMMA 3.1 (Single-Tone Regressor) Let the regressor a(t) in the harmonic adaptive
system (2.1)-(2.5) be given by the single-lone cxpression,

x(1) = dici(1) (3.1)
where d; is any scalar, and

¢i(t) = [sinwit, coswit]’ € I (3.2)

Then the mapping H from ¢ to § ts ceactly representeble as the lincar time-invariant
opcralor,

H o g= H(p)e (3.3)
where,
H(s)= pd;* 1i(s) (3.4)
Fr(a : : I : :
Hi(s) =~ QIL(Q)O(% ©Jwi) 4 (s A ]UJ{)) Pos = (s Jwi)- I'(s - Jwi) (3.5)
B, w )
Po(d) & Re(FGwy));  19G) £ Im(I(Gwi)) (3.6)
6



1'1{001":

The filtered regressor (2.3) is composed of a single sinusoid at w; put through a lincar
filter I7(s). Hence, using (3.6) it canbe written (iii steady-state) as,

() = &I (pa(t) = iF; at) (3.7)

where,

]’}f(i) ]"1(7') 2%x2
Fio» D S R 3.8
1) i) | (3.8)

Using (3.7), the mapping from ¢ to § can be written as,
g = pd 26t V)| Fielt)e] (3.9)

Let 4(1) be the impulse response of the LI'Toperator corresponding to ]'(p). Thenusing (3.2)
and (3.8), equation (3.9) can be expressed interms of convolution integrals,

g = pd? qmwﬂ/ []‘R ysinwi(t — 1)+ (2) cosw;(t - 7)1(:(1, - 7)dr
4 pd? (0%01/ {]‘1: Jeoswi(t~ 1) - Iy(d)sinw;(t - T)lc(i - 7)dr (3.10)

: /1(11-2'/0 ~y(7 )[]'R( yeoswit - F(7) sinwiT ¢t - 7)dr (3.11)

llere, (3.11) follows from (3.1 O) by using standard trigonometric identitics (see Remark 3.1
below). Note that (3,11) is inthe formof a convolution of the input ¢(1) with the time-
invariant impulsce response,

Y1) (e )[],R( Ycoswil | M(1) sinwit (3.12)

Taking the Laplace transforin £{ -} of (3.12) and using the modulation property [3],
L{y()e )= T'(s - juwi) (3.13)
gives the desired expression (3.5). 0

REMARK 3.1 Inthe proof of Lemma 3.1, (3.1 1) follows from (3.10) by using trigonometric
identity,

sinw;t []f“( i) sinw(t - 7) A 17(0)coswi(t - T )1
r
1 cosw;l I'p(1) cosw;(t - 1) - 11(7) sin wi(l - ‘T)]

= Fp(t) coswit 4 (1) sin wiT (3.14)



Identity (3.14) is aslight generalization of (2.8), and shows that the function of both ¢ and
7onthe left-halld side can be represented purely as the function of 7 on the right side.
This ensures that the convolution (3.1 1) hasashift-invariant kernel, which indicates that the
operator frometoy is 1:1°1. o

3.2 Multitone Regressor Case

The mainresult of this paper is given next which gives necessary and suflicient conditions
for the operator H to be LTTin the general multitone case.

THINOREM 3.1 (1.11 Representation Theorem) Let the regressor 2(l) in the harmonic
adaptive system (2.1)-(2.3) be given by the general multitone harmonic capression (2.4)(2.5)
where the frequencics O < wi< ... < wyare distinet, 1lon.zero, and |[1'(jw;)| >0 forall ;.

Then,
(i) The mapping H from ¢ to § is cxactly represent able as the linear time-inva riant operator,

H: o g o= 1(p)e (3.15)

if and only if the matriz X in (2.4) satisfics th e following X- Orthogon ality (XO) condition,

A’- Orthogonalily (XO) Condition:

Ara o D? (3.16)
d? a2 o . .. 0
])2 9 0 “" “" : C]{2771 X2m (3[7)
0 . . . 0 d2 Iy,

wh ere, d;*> 0,7 =1, ... ,marc scaars and 1ax2 ¢ R**? is the matriz identity.

(22) 11(s)in (3.15) is given in closed-form os,
H(s)=p >_:(11-2 « Hi(s) (3.18)
g
AW, . _ I (e : :
1) oy s e, I (e e 16 1 g a9
Fr(i) £ Re(I'(Gw)); 1) £ (1 (jw:) (3.20)
8



Proof: Scc Appendix A, .

Intuitively, the results of Theorem 3.1 canbe understood using the sequence of block dia-
gram rcarrangements shown in Figure 3.2, (which incidentally can be taken as an alternative
proof of sufliciency, but not necessity). Specifically, Figure 3.2 Part a. shows the initial adap-
tive system with harmonic regressor; Part bh. Snows thematrix A" pushed through several
scalar iatrix blocks of the diagram; Part c. substitutes the identity 72 = D? where D?
has the special pairwise diagonal fern] associated with the XO condition (3.16 )(3.1'7); Part
d. pushes the matrix D? back through scveral scalar matrix blocks:, and Part . follows by
recognizing that Part d. is simply a parallel bank of filters of the forin shown in Iigure 3.1
cach with a perfect sille/cosine basis, i.c., it is represeritable as a sumiation of 11T systemns
of the form treated inl.emma 3.1.

DEFINITION 3.1 The matriz X7 X = D? having the special pairwise diagonal structure
(3.17) in Theorem 8.1 is defined as the confluence matra associaled with a particular
harmonic adaptive system (2.1)-(2.5). ]

The name “confluence matrix” has been chosen to reflect the fact that N sighal channels
arc cflectively combined into a smaller number of 2m channels in Figure 3.2 using propertics
of this matrix.

REMARK 3.2 The LTT representation from ¢ {o ¢ in Theorem 3.1 is invariant under any
orthogonal transformation of the regressor, ic., any z = Qa where QQ7 = Q7Q = 1. To
sce this, assume that A7 = D2 and denote A, = QA’. Thenusing regressor zin the
transformed system gives,

S A N S O (321)

which satisfies the XO condi ion with the samec confluence matrix D? as the original system.

REMARK 3.3 A harmonicadaptive system which does not satisfy the XO condition for a
specific A can be made 1, ] (assuming that X7 & isinvertible) by the regressor transformation
z: Re where IR = D(ATX) TAT ) and where DD is any matrix chosen such that 2?2 has the
pairwise diagonal form (3.1 7), Thentesting the XO condition for the transformed regressor
z gIVES,

AT, AT Rx o D? (3.22)
which is satisfied by construction with confluence matrix )2, .
9
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IFigure 3.2: The X() condition of Theorein 3.1 motivated by sequence of Block diagram
rearrangements
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3.3 Minimal Realizations

Without l0ss of generality, the confluence matrix will be assumed to be nonsingular, i.e.,
D? >0, since any zero diagonal pair d,% | loxa, d; = () inD* > () corresponds {o a distinct
frequency w; which can be removed from the definition of ¢(t), reducing the Value of m
accordingly.

Consider an L'TT harmonic adaptive system defined by the regressor @ = AX¢(t) € RN,
A ¢ RN*P Javing the confluence matrix A7A = D? > 0. Let a different regressor be
defined by @y = Aye(t), where &y € 1" is any matrix factor of the same confluence matrix,
ie.,
Aray = D? (3.23)
Then by the results of Theorem 3.1 the regressor 27 will give an cquivalent realization of the
adaptive system in the sense that it will have an identical II'l transfer function H.

In words, the sel of all cquivalent realizalions of a given L1'1 harinonic adaplive system 1is
onc-lo-onc with the sct of all matriz faclors of ils conflucnce matriz. An important class of
cquivalent realizations is considered next.

DEFINITION 3.2 A minitmal realization of an 111 harmonic adaptive system (2.1)-
(2.5) is dcfined by the regressor choice @y = Aye(t) where Xy € R¥™2™ s any square matriz
factor of its confluence matriz D? > 0. ]

Minimal realizations are nol umque since there are generally many square matrix factors
of thepairwise diagonal confluence matrix. Minimal realizations arc important because the
corresponding regressor ay = A'It(t) € 27 is of length 2m which is the minimumn possible
for rcalizing the 1'T'Ttrans{er function ‘H of order 2m:. The nuinber of tap weights will also
beminimal of size 2m.

Animportant property of regressors is persistent excitation (P10). Specifically, a regressor
a is sad {o be PISif there exists a1, @2, 6 > 0 such that [26],

to4 6 -
ag . ] > / ’ a()e(r)dr>az 1 forall {4 > 0 (3.24)
t

0

Duc to the sinusoidal structure of ¢(t) ¢ 2™ in (2.5), the regressor @ = (1) associated
withany minimal realization will be PE (i, e, m distinct sinusoidal frequencies arc availa ble
for estimati ng 2m parameters). Consequently, eny L1 harmonic adaplive system (cven over-
paramelrized!) is inpul/output cquivalent to o minimal realization with o P1Y regressor. This
IS significant since the minimal realization can replace the original system in a Lya punov type
analysis to prove exponential (rather than just asymptotic) convergence and BIBO stability
of a closed-lool) implementation. These strong properties arce somewhat remarkable in light
of the fact that the XO condition places no restriction on overparametrization of the adaptive
systemn. However, it can be understood by the adaptive system’s exact input/output equiv-
alence to an L1 system, for whichit is known that asymptotic stability implies exponential
stability.

11




Ina larger context, the property of input/output equivalence to a minimal P realization
is not restricted to adaptive systems with 11T representations. This samne property has
been shown to hold generically for overparametrized adaptive systems with bounded periodic
regressors in Bayard, Spanos and Rahman [1].

34 Tonal Canonical Form

The reduced representation shown in Part d. of IMigure 3.2 deserves special attention.

] YE¥I NIT] ON 3.3 Tonal canonical formisdcfin cd as th ¢ unique minimal realization
of an L1'l harmonic adaptive system (2.1)-(2.5) specified by the regressor choice @y z Aye(t)
where A € P X2 i's the unique positive diagonal squarc-rool Xy= 1) > 0 of iisconfluence
malrix 1?. .

Tonal canonical forin corresponds to realizing { he adaptive system with the simple paired
sine/cosine regressor &y == De(t). 11 1e name has been chosen to reflect the fact that cach
clement of the regressor is a single PUrc tone. The realization is a canonical form in the sensc
that it is minimal Jength, always exists and is unique. Simply stated, any harmonic adaptive
system which admits an LT representation is equivalent 10 an adaplive system realized in
tonal canonical form i.e., with a minimal length paived sinelcosine regressor x1= De(t).

)/I'l adaptive systems arising from a paired sine/cosine regressor of the form ay = Def(t),
have been studied by many rescarchers. A rigorous proof of its LT properties was first
givenin Glover’s 1977 paper (cf., [12], first paragraph of Scction V) inthe discrete-time
case without regressor filtering (i. e., '(s) = 1), and for the gradient algorithin 1'(s) = 1/s.
Thisresult was extended later by Morgan and Sanford [20] to include an arbitrary regressor
filter 1'(s)# 1, and recently by Collins [7] to include botha regressor filter and a general
adaptation law. Presently the discrete-time version of this sine/cosine result is well-k]lowl)
in the signal processing commuuity, and 1S included in the book by Widrow and Stearns
(discrete-time case, [34]~Jagc318).

Clearly, the paircd sine/cosilic regressor is well studied and has been used in adaptive
sy stems for many ycars in the literature. A main point. of this paper is that thisis not just
an isolated cxample of an adaptive system with an LT1 representation, but rather is the
fundamental canonical representation for all possible I'T'l harmonic adaptive systems.

12




4 SPECIAL CASES

Several useful 1T representations fall out as special cases of Theoremn 3.1, and will be treated
in the next few Corollarics.

COROLLARY 4.1 (Gradient Algorithm with lLeakage) Assume that the adaptive sys-
tem with harmonic regressor (2.1)-(2.5) is specified as the gradient adaptive algorithm with
leakage, t.c.,

w= - ow- a(t)e(l) (4.1)
Jor some valuc of the leakage paramcter o > 0 (cf., loannou and Kokotovic [15]). Then, if
the XO condition of Theoremn 3.1 is salisfied, the L1 capression (8.18) for 1 is given by,

77

- iy i o
]] S == 1-2 -

(4'2)
PROOY¥:Result (4.2) follows by substituting, 1'(s) = ;jod, > 0, and I'(s) = 1in Tl icorem
3.1, andrcarranging,. .

COROLLARY 4.2 (Gradient Algorithm) Assumc that the adaptive system with har-
monic regressor (2.1)-(2.5) is specified as the gradient adaplive algorithm, i.c.,

w = pa(t)e(t) (4.3)

Then, if the XO condition of Theorem 8.1 is salisfied, the LTI capression (3.18) for 1l is
given by,
m (]_QQ

IOEND S (1.4)

2. 2
1':]'S le

PROOVF: Result (4.4) follows by substituting o= Ointo (4 .2) of Corollary 4.1, and rear-
ranging. .

COROLLARY 4.3 (Filtered-X Algorithm) Assumc that the adaptive system with har-
monic regressor (2.1)-(2.5) is specified as the Filtered-X algorithm (cf., [84]), using gradient
adaptalion, i.c.,

w = pa(t)e(l) (4.5)
, = I(p)a(l) (4.6)
Jor some choice of regressor filter 1(s).
Then, if the XO condition of Theorem 3.1 is salisficd, the LTI capression (8.18) for 1l is
gluen by,

1(s) (s) = /lle (i g} T (4.7)

13




1'1{001”: Result (4.7) follows by substituting, I'(s) = iill Theorem3.1, and rearranging. m

COROLILARY 4.4 (Augmented Irror Algorithm) Assume that the adaptive system
with harmonic regressor (2.1)-(2.5) is specified as the Augimented Frror algoridhm (cf., [19],[22]),
using the gradient adaplalion algorithm, i.c.,

w = (1)) (4.8)

where the augmented error ¢ is given by,

c=c4 )il - 3 (4.9)
g wla (4.10)

g= w'a (4.11)

&= 1'(p)|a] (4.12)

Jor some choice of regressor filter 1'(p).

Then, if the XO condilion of Theorem 8.1 is satisfied, the mapping from ¢ to 4 is L1T1 and is
given by,

()= ()14 Cls)- 1(s)I1(s))™ (4.13)
where 11(s) is defined in (4.7), and,
N " 1 (Gws) s
C(s) = /1{}:_[(1? - 2 W (4.149)

P ROO¥: Using (4 .8) and (4.10) together, the mapping from ¢ to g can be simply recognized
as the Filtered-X algorithm with filter J'(s) and can be calculated with the aid of Corollary
4.3 1o give, )

g = H(p)c (4.15)
where ]7(8) is given by (4.7). Similarly, using (4.8) and (4.1 1) together, the mapping from ¢
to g is of the forn of a gradient algorithm with regressor & = A’ Fe(l), where F is defined as,

F 2 blockdiag{F;} € R2x2m (4.16)
-l %) 1) 2x2, i , 7
7 [ PGy Gy | €T o e o

The mapping from ¢ to § can be calculated with the aid of (4.4) in Corollary 4.2 to give,
= Clp)c (4.18)
where (Af(s) IS given by (4.14), since the related XO condition iS sat isfied with,

FIXTXF = blockdiag{d.* - 177 (Gwi) [ Tox2 ) (4.19)
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Substituting (4.15) and (4.18)into (4. IS) givesuponrcarranging,
-1

C: (] 4 C(p) - ]"(];)]7(]))> ¢ (4.20)
Substituling (4.20) into (4.15) gives the desired result (4.13). .

5 A PPLICATION

For demonstration purposes, the theory of LT1representations developing in this paper is ap-
plicdto the problem of harmonic noise cancellation. The problem of cancelling harmonic noise
arises inmany diverse fields. Applications include damping vibrations in flexible structures
[28] [30], helicopters [13][27], propeller aircraft [18][8][9], air conditioning ducts [14][6], auto-
mobileengines [24][25], cryocoolers [7], rotating machinery [29] [31], submarines, or acoustic.
noisc conitrol [23], and clectrical noise [34], etc..

A genceral formulation of the harmonic suppression problem is shown in Figure 5.1.

DISTURBANCE
XO CONDITION: x=Xc(t) y

X'X = D?
J 4 l PLANT

———»[ms) (| H) —

ADAPT IVE LAW

Figure 5.1: Harmonic noisc suppression problem

Assuming that the adaptive law admits an L1'Trepresentation 11 (s), the closed-loop trans-
fer function from the y to € in Iigure 5.1 canbe calculated as,

(e). - YO
P)= -y 11(s) 1'(s) v(s) G.1)

where Fo(s)and }'(S) denote the Laplace transformed signals ¢ and y, respectively.

5.1 Gradient Algorithm

1 .ct the Gradient algorithm of Corollary 4.2 be used for adaptation, and consider the special
Case where ’(s)= 1. Then the closed-loop 11 systein becomes,

!
]’/‘(S) ’

'] | —]](3) Y(S) (5.2)




where,

N mood’s
]](8) L L Ar-?q -}wz (53)
Equivalently, T (54 w?)
1(s)= - R IO (5.4)

P (2 w?) s D2, 4 P11-+iS2 4 w?)

From the numerator n (5.4), it is scen that there are “pel’feet notches” at the frequencies
{widi . Usingrootlocus, thepolelocationscan be found analytically for small i as [2],

gl = It o Jw;, o= 1,..m (5.5)

As jiincrcases the roots move in a direction perpendicular to the jw axis directly into the left
half planc, a distance of pd.?/2. Hence, the resulling damping in the ith disturbance tone is
proportional to both the adaptation gain j and the diagonal entry of the confluence matrix
d.?. Yrom the pole and zero locations it can be deterinined that the notelies are symmetric
about cach f1equen cy w; with 3dB bandwidth ud,;? in radians/scc.

Since the loop gain (5.3) is completely inthe RHP, a Nyquist analysis indicates that the

¢ losed-loop system is completel y phase stabilized (i .c., there is no gain crossover {requerncy)
and will be stable for any values of 4, wi, d 2> 0,1 =1 ,.., ?1.

52 Filtered-X (FX) Algorithm

The Filtered-X algorithm is a general inethod to deal with the intervening plant P’(s) in
the error path [34]. The Filtered-X algorithm first appearedin a paper by Widrow 1971
[32] trcating the special case of a pure delay plant. Later extensions to arbitrary LT plants
appeared at approximately the same time in papers by Morgan 1980 [21], Burgess 1981 [5],
and Widrow ct. a. [33].

Let the Filtered-X algorithm of Corollary 4.3, be used for adaptation with the filter choice
I°(8) = P(s) where P(s) is an estimate of 1’(s). Then the closed-loop system is given by,

o 7I’(s)

N - .
1+ 11s) 17(S)

Y(9) (5.6)

w]) ere,

. m (11-2<]A)}g(2.)8 -4 ]A)](Z.)L&),)
H(s)= pd - > 2y (5.7)

=1

(i) 3 Re(P(jw));  P1(0) £ Im(P(jw))) (5.8)

16




Specifying the plant as a rational function I°(s) = N(s) /1(s) in (5.6) and rearranging gives
the closed-loop systemn as,

( )Ilm ( 2) i ) o
DI (2 -108) -1 N () 31y 42y (‘)s | P10 Ngi(s? -{ )

S 1es) (5.9)

Irom the numerator in (5.9), it is scen that there are “perfect notches” at thefrequencies

{wz},'- Using root locus (assuming that I°(s) does not have resonances near the resonances
of 11 (s) 1}1( pole locations can be calculated for small j as,
.’
she ! ‘2 (5w P(wiy o Jw; (5.10)

It isscen that for small jethe pole moves off” the jw axis a distance })Jopoulond]to» l])*(]U)z)])(jwi)l)
ata dC])al’till’C angle determined by the phase of <P* (jwi) P(jwi). lence, the estimate ]’( )

must dpp]OM]ﬂdt( the plant ’(s) to within 90( in the vicinity of (ac]n(condn(( frequency
wy, =1, m &S a nccessary condition for stability.

Stability conditions can be understood more clearly using a Nyquist analysis. I'or this
purpose, the loop gainin (5.6) IS rewritten as,

A e d? (J,f( )5 Pi(i)ec) 1(s)
H(s)P(s)= pd - e —— (5.11)

7z-1

T

/L Lis) - I(s) (5.

sQIw

a2
—t
N
—

where Li(s) = 1p(d) -{ (wi/s)P (7). Evaluating 1i(s) at the resonance s = jwi gives,

Ljeos) = Puli)- iPiti) = P (jeo) (5.13)
wlicre the superseript “#” denotes the complex conjugate. 1L is noted that Li(s) acts to
approximatcin<: complex conjugate OF the plant al 1V1<: resonance frequencywi. Comparing
the loop gain (5.12) with (5.3), andusing (5.13) it is scen that the Filtered-X algorithin
works by trying to “conjugate” the plant phasc in the vicinity of cach resonance frequency
wi, in an attempt to recover the RUP loop gain (and hence the convergence propertics)
associated with the gradient algorithm applied to a unit plant /°(s) = 1. This corresponds to
phasc stabilization] onthe Nyquist plot inthe vicinity of cach of the resonances. Away from
the resonances, the loop gain (5.12) can be gain stabilized by making the adaptation gain
jesufliciently small to avoid the Nyquist critical point. ('This provides a precise condition
011 st which avoids the heuristic “sufliciently slow tuning to justify commuting LTV blocks”
argur nent used in other treatments [34]). Hence, the Filtered-X algorithin works by using
a combination of phasc and gain stabilization. Ior any specific example, precise stability
bounds can be established on all parameters g, wi, d;2> 0, i = 1,....mandthecerror
P(s) - P(s) using @ more detailed LTT analysis.
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6 DISCUSSION

At thispoint, several comments arc In order.

1. All of the LI transfer functions 71 (s)inthe Corollaries of Scction 4 have large gains
in the vicinity of the tone frequencies wy, i = 1 ,....m. When used in closed-loop, the
large gains become “notches” of the forin (1 -1 11(s)) ! (cf., Section ). The creation of
closed-loop notches is simply an application of the internalinodel principle (IMP?) [11]
which has aso been discussed in the context of adaptive feedforward systems by Bodson
cl.al. [4]. These closed-loop notches are effective at cancelling sinusoidal disturbances,
and have been used for this purpose ina wide varicty of adaptive feedforward control
applications (cf., Sieversand von Flotow [28], Morgan [21 ], Collins [7], Spanos and
Rahlman [30], Bodson, Sacks and Khosla [4], and Messner and B odson [1 7]).

2. The 1T result, in Corollary 4.4 for the Augmented Frror algorithm appcars to be new
and dots not have any counterpart iy the literature. This result has been shown in [2]
to provide an iimportant alternative strategy for adaptive harmonic noise cancellation
where there 1S a plant blocking the noise cancellati on path. In contrast to the Filtered-
X algorithm which attempts to phase stabilize near the resonances and gain  stabilize
clsewhere, the Augimented rror algorithm attempts to phase stabilize everywhere [2].

3. Glover’sresult [12] on LTI representations of adaptive systems withlong Lal)-delay line
('I'DL) regressors can dso be shown to be aspecial case of the XO condition [2]. The
rigorous cxtension of Glover’s result to the multitone case has beenmade in [2] based
on the XO condition.

4. If the XO condition is not satisfied exactly, the adaptive systemn is no longer LT'1.
However, it is instead representable as an 11T and 1)1V subsystem in parallel, where
the LTV part can be explicitly norm-bounded [2]. The norm-bound (an induced 2-
norm) is comnpatible with standard 11, robustness analysis.

7 CONCLUS1IONS

This paper establishes @ necessary and suflicient condition for a harmonic adaptive system to
admit an exact L'I'frepresentation. This condition (i.e., the XO condition) unifies many re-
sults in the literature, and leads to the notion of equivalent realizations, minimal realizations,
and the tonal canonical fori. Siimply stated, the XO condition indicates that the block dia -
gram Of the adaptive system can be rearranged so that the regressor hasa pairedsine/cosine
form (i.c., tonal canonical forn). These results arc important because 11T adaptive systems
can be designed and analyzed completely using standard incthods, taki ng advantage of a
wealth of tools available for 1,1l systems.
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Minimal realizations arcimportant since their corresponding regressor is persistently ex-
citing, and is of minimum length for realizing the resulting LT transfer function. The tonal
canonical realization IS important because it indicates cquivalence to an adaptive system re-
alized with a minimal length paid sine/c.osjnc regressor. The paired sine/cxxsilic regressor
iswc]] studied andhas beenusedin adaptive systems for many years inthe literature. 1t is
interesting and significant that it turns out to be the canonical representation of al harmonic
adaptive systems with LT representations.

Regressors for adaptive sinusoidal noise cancellation are typically constructed by filtering
and combining various signals mecasured in the environment.  The XO condition allows a
systematic comparison 0f the quality of suchimplementations, and is expected to lead to

many optimized basis functions and new adaptive control architectures in the future.
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A APPENDIX : Proof of Thecorem 3.1

Define,
/-\;TA: :A M = {Nju} ¢ ]{2171)(2771 (A])
1 12
M;; 2 [ 111]5]1 jg’j? } € R Aford,g= 1,..,m (A.2)
1 ¥

Using (2.3)-(2.5), thefiltered regressor canberepresented as,
= I'(p)e] = F()Xc(t)] = XFe(l) (A.3)

where F is the block diagonal matrix given by,

F = blockdiag{F; } € I&¥"**™ (A4)
ca | IR@) 1) 2x2. i , .
F. £ [ ) I) C % Jori=1,...,m (A.D)
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Proof of (i): 1t is desired to snow that M = 1)? (where D? has the block-diagecma)] form
(3.17)), if andonly if the mapping H fromc to g is LIl }rom (2.1)-(2.5) and (A.3) this

mapping can be written as,

g = pe()T AT L P(p)[AFe(t)c] (A.6)
= pe(D)TXTAXF LT (p)[e(t)e] (AT)
~ pe(t)YMF /et Y(1)e(t - 7)e(t - 7)d7 (A.8)

i g1
ft J (1 Ye() Vet T)e(t - 7)dr (A.9)
0
where (1) is the impulse response of the fitter 1'(s), and where we have defined the matrix,
V:-MT (A.10)

For later convenience, V is partitionedinto 2 x 2 blocks (compatibly with F,M), as follows,

VY - {V’[j}ghﬂmx'zm (A]])
o2
Vi £ zf@g Z;{Q w € IR ford,j= 1,..m (A.12)
1 iy
It is scen that the mapping H from ¢ to ¢ in (A.9) is represented by a convolution integral,

which is time-invariant if and only if the kernel is independent of time 1, equivalently, if and
only 1,
cW)Ve(t -7y = B(7) (A.13)

w here 3(7) is a function purcly or 7. Condition (A.13) will be examined indetail. Expanding
¢(t - 7) gives thie identity,
c(t - 7) =Q)c(7) (A.14)

where Q(¢) is the block diagonalmatrix,
Q1) = blockdiag{Q;(1)} ¢ R*m*¥" (A.15)

Al - cosw;l sin wil
Qi(t) sinw;l

Substituting (A.14) into (A.13) gives,

o (W)e(r) = B(r) (A.17)

coswid | € R¥2. for i o= 1,771 (A.16)
HOM b

where,

o’(1) £ )" VQ(1) (A.18)
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Fquation (Al 7) holdsif and only if « is a conistant vector, i.c., a(t) : a®. To sce this,
multiply both sides of (A. ] 7) 011 theright by ¢’ (7) andintegrate withrespect to 7 over
any interval [71, T2]suchthat [ ¢(7)e(7 Y dr is invert ible. Such aninterval always exist s since
the components of ¢(7) are lincarly independent functions (i.e., sines and cosines of distinct
frequencies). The resulting equation can be sold for a, implying that any valid solution «
to cquation (A.17) must be a con stant vector.

Assuining that « is constant, consider relation (A .18) taken two components at a time,
e,

(1) VuQ5(1) = o, a) (A.19)
where af, of are constants and,
cilt) = [sinw;t, cos w;t]” (A.20)

Expanding the first component of (A.19) gives,

af = — cos(w;t) sin(wit Jvi cos(w;t) cos(wit v
| sin(w;t) sin(wit)v? -4 sin(w;t) cos(w;t)v?? (A.21)
] 1
o (- sin(w; - wi)t - sin(w; = wi)t)vy] - é(cos(wj - will - cos(w; 4 wil)vf
1 12 1. . 22 (A o
-+ 5(((05(% - wi)l = cos(w; + w;)t)vy; :?(sm(wj 4 wi)t A sin(w; - wi)t)vf] (A.22)
] -
oy sy 4wt 6
] 11 22N\2 12 21N2 % .y )7
—|-2 (v 1 v ) A (v - )| sin((wy - wi)l - i) (A.23)

Here, (A.22) follows by expanding (A.21) interms of sumn/diflerence frequencies; and (A.23)
follows by rcarrangement. The constant phases ¢;;, 1;; can also be calculated, but will not
be needed. A similar expression to (A.23) can be calculated by using the second term a3 in
(A.19), but this can be shown to be redundant with (A.23) and will not impose additional
consiraints.

Case 1: 715/ j

IYirst consider the case wheret ¥ j so that w; and w; are distinct nonzero frequencics.
Then (A.23) is thesumn of two sinusoids of distinct frequencies, which is equal to a constant
if and only if both terms vanish identically, i.c.,

ol - 1)4.2:2; vl s )2 (/]2/1)

i 17 1 17
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n_ 22, 12 21 ‘
vij = - /1)1']‘, 'Uij = 1’1-‘]‘ (AZS)
Fquivalently, o] = 02 = o2 = ol? = 0, which gives,
. . { :
vij = O’ fo]’ '13/] (A26)

However, from (A. | 0)and the 2 X 2 partitioned structure of matrices Mand .7,
Vi« M7 (A.27)

where F; in (A.5) is invertible (since its determinant | (jw;)|? is nonzero by assumption).
Combining (A.26) and (A.27), and using the invertibility of F; gives,

IVL’J‘ = 0; for 1 ‘/ ] (/1?8)

Case 2: 1= ]

Next consider the case where 7= j. Then, cquation (A.23) becomes,

1 RE:
0f = o [0 o4 2l sin(et 4 g)
! 2
| é[(”gil ol (vl - 1)1-21-])2] sin(t;) (A.29)

The second term of (A.29) is constant, as desired. The first term of (A.29) is sinusoidal of
nonizero frequency, which is constant-valued if and only if it vanishes identically, i.e.,

(4.30)
11 owever,
MiF; - Vy (4.31)

or cquivalently (by theinvertibility of F;),
Mii = Va7 d (A.32)
By the symmetry and noncgativity of M = X7 X’ once has,
m# , nl? (A.33)
m}z-] > ot > 0 (A.34)

lIixpanding (A.32) using properties (A.30)(A .33) and an analytic expression for Fi! gives,

11 12 2
m::  m; d. b,
v “ols Y FI e t ! A.35
[ mlz m# } e [ -&; d* (4.35)
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where,

022 (0 (i) 4 V)1 ) (4.36)
2 (- ORI 4 ORI o) (A7)
By (A.33)and the special form of the right-hand side of (A.35),it follows that,n}} = m?2£

i
d;? >0 and m?j] : m}f =0, which gives,

d* 0
Mii = [ 0 d?

In summary, the kernel of the convolution (A.9)is a function purely of 7 if and only if the
i, jthi block M;; of the matrix M has the fern] (A.28) for ¢+ j,and the form (A.38) for i = j.
Equivalently, the lincar operator H from ¢ to g is time-invariant if and ouly if M has the
block-diagonal form of D?in (3.17) of Theorain 3.1, which is the desired result.

>0 (A.38)

Proof of (ii): Substituting A7AX*M = D%into (A.7) gives,

ic )17 1(p) Fdi) €] (4.39)
O A2y (D) Fiei(t)e] (A.40)
i= 1
=y d? - Hi(p)e (A.41)
1= 1

Here, (A.40) follows by the partitioned structure of D2 F, ¢(t);and (A.41) follows by applying
Lemma 3.1 (eg., compare to (3.9)), separately for cach termin the suin (A.40). =
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